

DECLARATION OF PERFORMANCE

DoP: 0146

for fischer concrete screw ULTRACUT FBS II (Metal anchors for use in concrete (heavy-duty type)) - EN

1. Unique identification code of the product-type: DoP: 0146

2. Intended use/es: Post-installed fastening in cracked or uncracked concrete, see appendix, especially Annexes B 1 to B 5

3. Manufacturer: fischerwerke GmbH & Co. KG, Klaus-Fischer-Straße 1, 72178 Waldachtal, Germany

4. Authorised representative: --

5. System/s of AVCP: 1

6. European Assessment Document: EAD 330232-00-0601

European Technical Assessment: ETA-15/0352; 2018-10-30

Technical Assessment Body: DIBt

Notified body/ies: 1343 - MPA Darmstadt

7. Declared performance/s:

Mechanical resistance and stability (BWR 1)

- Characteristic resistance to tension load (static and quasi-static loading): See appendix, especially Annexes C 1 and C 2
- Characteristic resistance to shear load (static and quasi-static loading): See appendix, especially Annexes C 1 and C 2
- Displacements (static and quasi-static loading): See appendix, especially Annex C 7
- Characteristic resistance and displacements for seismic performance categories C1 and C2:
 See appendix, especially Annexes C 3, C 4 and C 7

Safety in case of fire (BWR 2)

- Reaction to fire: Anchorages satisfy requirements for Class A 1
- Resistance to fire: See appendix, especially Annex C 5 and C 6
- 8. Appropriate Technical Documentation and/or Specific Technical Documentation: ---

The performance of the product identified above is in conformity with the set of declared performance/s. This declaration of performance is issued, in accordance with Regulation (EU) No 305/2011, under the sole responsibility of the manufacturer identified above.

Signed for and on behalf of the manufacturer by:

Andreas Bucher, Dipl.-Ing.

Wolfgang Hengesbach, Dipl.-Ing., Dipl.-Wirtsch.-Ing.

Tumlingen, 2018-11-06

- This DoP has been prepared in different languages. In case there is a dispute on the interpretation the english version shall always prevail.

1. V. A. Bull i. V. W. Kylal

- The Appendix includes voluntary and complementary information in English language exceeding the (language-neutrally specified) legal requirements.

Specific Part

1 Technical description of the product

The fischer concrete screw ULTRACUT FBS II is an anchor of sizes 6, 8, 10, 12 and 14 mm made of hardened carbon steel. The anchor is screwed into a predrilled cylindrical drill hole. The special thread of the anchor cuts an internal thread into the member while setting. The anchorage is characterised by mechanical interlock in the special thread.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance		
Characteristic resistance to tension load (static and quasi-static loading)	See Annex C 1 and C 2		
Characteristic resistance to shear load (static and quasi-static loading)	See Annex C 1 and C 2		
Displacements (static and quasi-static loading)	See Annex C 7		
Characteristic resistance and displacements for seismic performance categories C1 and C2	See Annex C 3, C 4 and C 7		

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1
Resistance to fire	See Annex C 5 and C 6

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with European Assessment Document EAD No. 330232-00-0601 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

	v types FBS II 6	6	
FBS II 6			
Hexagon head with formed washer (US)	(ISBN)		
Hexagon head with formed washer and TX-drive (US TX)	TO THE SEPTIMENT OF THE		
Countersunk Head (SK)	\$837 \$7X		
Pan head (P)	FBS		
Large Pan head (LP)	FBS		
Hexagon head and connection thread M8 or M10 (M)			
Internal thread M8 / M10 combined (M8/M10 I)			
fischer concrete scre	w ULTRACUT	FBS II	
Product description Screw types FBS II 6			Annex A 2

Table A4.1: Geometry and material									
Corou tupos	/ oi=o				All head sh	apes			
Screw types	6	8	10	12	14				
Thread outer diameter	d _a		7,75	10,3	12,5	14,5	16,6		
Core diameter	d _k	[mm]	5,65	7,4	9,4	11,3	13,3		
Shaft diameter	d _s		6,0	8,0	9,9	11,7	13,7		
Material		r 1	Hardened carbon steel; A _{5%} ≥ 8%						
Coating		[-]	galvanized						

Head marking US, US TX, S; S TX, SK, P, LP

FBS II: Product identification

XXX: Screw length L

Marking at M8, M10, M8/M10 I

Head marking: XX: Screw length L Rotary marking: FBS II: Product identification

6: Screw size

fischer	concrete	screw	ULTRACUT FBS II	

Product description Geometry and marking

Annex A 4

Specification of intended use												
Table B1.1: Anchorages subject to												
Size	6		8		10			12			14	
Nominal embedment depth [mm]		50	65	55	65	85	60	75	100	65	85	115
Static and quasi-static loads in cracked and uncracked concrete	√											
Fire exposure												
Seismic performance category C1	✓		1			/			/			/
Seismic performance category C2			•			•						•

Base materials:

- · Compacted reinforced or unreinforced normal weight concrete without fibres according to EN 206:2013
- Strength classes C20/25 to C50/60 according to EN 206:2013
- · Uncracked or cracked concrete

Use conditions (Environmental conditions):

Structures subjected to dry internal conditions

Design:

- Anchorages are to be designed under the responsibility of an engineer experienced in anchorages and concrete work
- Verifiable calculation notes and drawings are to be prepared taking account of the loads to be anchored.
 The position of the screw is indicated on the design drawings
 (e.g. position of the screw relative to reinforcement or to supports, etc.).
- Design of fastenings according to FprEN 1992-4: 2016 and EOTA Technical Report TR 055
- Seismic design according to EOTA Technical Report TR 049

Installation:

- · Hammer drilling or hollow drilling:
 - All sizes and embedment depths
- · Alternative diamond drilling: All sizes and embedment depths from diameter 8
- Screw installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters on site
- In case of aborted hole: New hole must be drilled at a minimum distance of twice the depth of the aborted hole or closer, if the hole is filled with a high strength mortar and only if the hole is not in the direction of the oblique tensile or shear load.
- Adjustability according to Annex B4 for: All sizes and embedment depths
- · Cleaning of drill hole is not necessary when using a hollow drill with functional suction or:
 - If drilling vertically upwards
 - If drilling vertical downwards and the drill hole depth has been increased. It is recommended to increase the drill depth with additional $3 d_0$.
- After correct installation further turning of the screw head shall not be possible
- The head of the screw must be fully engaged on the fixture and show no signs of damage
- For seismic performance category C2 applications: The gap between screw shaft and fixture must be filled with mortar; mortar compressive strength ≥ 50 N/mm² (e. g. FIS V, FIS HB, FIS SB or FIS EM Plus).

fischer concrete screw ULTRACUT FBS II	
Intended use Specification	Annex B 1

Table B2.1: Installation parameters FBS II 6 - drilling bore hole and setting tools								
FBS II 6			All head shapes					
Nominal embedment depth	h_{nom}		$40 \le h_{nom} \le 55$					
Nominal drill hole diameter	d_0		6					
Cutting diameter of drill bits	d _{cut} ≤]	6,4					
Clearance hole diameter	d _f ≤	[mm]	8					
Drill hole depth		1	h _{nom} + 10 ¹⁾					
Drill hole depth (with adjustable setting)	_ h ₁ ≥		h _{nom} + 20					
Torque impact screw driver	$T_{imp,max}$	[Nm]	450					
Maximum installation torque with hexagon nut on head shapes M8, M10 and M8/M10 I	T _{max}	[Nm]	10					

 $^{^{1)}}$ Value can be reduced to h_{nom} + 5 for installation vertically upwards

Table B2.2: Installation parameters FBS II 6 – drive and fixture

Table Dalar Metallation parameters in Do no and interes											
FBS II 6	US	US TX	SK	Р	LP	M8	M10	M8/M10 I			
Wrench size	SW	[mm]	1	10 -				10	13		
TX size	TX	[-]	-	- 30							
Head diameter	d_h		1	17 13,5 14,4 17,5				-			
Thickness of fixture	$t_{\text{fix}} \leq$	[mm]			L - h _{nom}						
Length of screw	L _{min} =	[mm]	40								
Length of sciew	L _{max} =				325				55		

fischer concrete screw ULTRACUT FBS II	
Intended use Installation parameters FBS II 6	Annex B 2

Table B3.1: Installation parameters FBS II 8 - 14													
Size			FBS II										
Size			w	3		10		12			14		
Nominal embedment depth	h_{nom}		50	65	55	65	85	60	75	100	65	85	115
Nominal drill hole diameter	d_0		8	3		10			12			14	
Cutting diameter of drill bits			8,4	45		10,45			12,50			14,50	
Cutting diameter of diamond driller	_ d _{cut} ≤	[mm]	·		10,30		12,30			14,30			
Clearance hole diameter	d _f		10,6 – 12,0		12,8 - 14,0		14,8 – 16,0			16,9 – 18,0		3,0	
Wrench size (US,S)	SW		13		15		17			21			
Tx size	Tx	[-]	4	0	50								
Head diameter	d _h		1	8	21			<u>_</u>					
Countersunk diameter in fixture	d _c		2	20 23		23							
Drill hole depth			60	75	65	75	95	70	85	110	80	100	130
Drill hole depth (with adjustable setting)	_ h₁≥	[mm]	70	85	75	85	105	80	95	120	90	110	140
Thickness of fixture	$t_{\text{fix}} \leq$		L					h _{non}	n				
I anoth of corour	L _{min} =		50	65	55	65	85	60	75	100	65	85	115
Length of screw	L _{max} =		400	415	405	415	435	410	425	450	415	435	465
Torque impact screw driver	T _{imp,max}	[Nm]	60	00					650				

fischer concrete screw ULTRACUT FBS II	
Intended use Installation parameters FBS II 8 - 14	Annex B 3

It is permissible to untighten the screw up to two times for adjustment purposes.

Therefore the screw may be untightened to a maximum of $L_{adj} = 20$ mm to the surface of the initial fixture.

The total permissible thickness of shims added during the adjustment process is $t_{adj} = 10 \text{ mm}$

Table B4.1: Minimum thickness of concrete members, minimum spacing and edge distance

Size	FBS II													
Size			6	8 10		12			14					
Nominal embedment depth	h_{nom}		40 to 55	50	65	55	65	85	60	75	100	65	85	115
Minimum thickness of concrete member	h _{min}	[mm]	max.(80; h ₁ ¹⁾ + 30)	100	120	100	120	140	110	130	150	120	140	180
Minimum spacing	\mathbf{S}_{min}		35	35			40		50			60		
Minimum edge distance	C _{min}		35	3	5	40			50			60		

¹⁾ Drill hole depth according to table B3.1

fischer concrete screw ULTRACUT FBS II	
Intended use Adjustment Minimum thickness of members, minimum spacing and edge distance	Annex B 4

Installation instruction		
	Drill the hole using hammer drill, hollow drill or diamond core drill. Drill hole diameter d ₀ and drill hole depth h ₁ according to tal	ole B2.1 and B3.1
a) b) 3x d ₀	Option a): Clean the drill hole Option b): Cleaning of drill hole is using a hollow drill or a diamond of the drilling vertically upwards or a depth has been increased. It is reincrease the drill hole depth add	drill or: nd the drill hole recommended to
	Installation with any torque impact maximum mentioned torque more to table B2.1 and B3.1). Alternative without an indicated torque mome ratchet spanner). The indicated to impact screw driver are therefore	nent (T _{imp,max} according yely, all other tools ent are allowed (e.g. orque moments for
	After installation a further turning be possible. The head of the screwith the fixture and is not damage	w must be in contact
2. 2x max 20 mm	Optional: It is permissible to adjust the scre Therefore the screw may be untig maximum of $L_{adj} = 20$ mm off the fixture. The total permissible thick added during the adjustment procist $t_{adj} = 10$ mm.	phtened to a surface of the initial eness of shims
≤ t _{fix.max}	Filling of the annular gap:	
	For seismic performance cates The gap between screw shaft with mortar; mortar compressi (e. g. FIS V, FIS HB, FIS SB o aid for filling the gap, the filling recommended.	and fixture must be fille ve strength ≥ 50 N/mm² or FIS EM Plus). As an
6h		
Intended use Installation instruction		Annex B 5

Nominal embedn	ent depth	h_{nom}	[mm]	40	45	50	55			
Steel failure for	tension load and	d shear	load							
Characteristic res	sistance	$N_{Rk,s}$	[kN]		:	21				
Partial factor		$\gamma_{\sf Ms}$	[-]	1,4						
Characteristic res	sistance	$V_{Rk,s}$	[kN]	9,0 13,						
Partial factor		γ_{Ms}	[-]	1,5						
Factor for ductility	/	k ₇	[-]		1	1,0				
Characteristic be	nding resistance	$M^0_{Rk,s}$	[Nm]		1	7,1				
Pullout failure										
Characteristic resistance in	uncracked	$N_{Rk,p}$	[kN]	8,0	10,0	12,0	13,5			
concrete C20/25	cracked	$N_{Rk,p}$		2,5	3,5	4,0	5,0			
	C25/30				1	,12				
	C30/37	-		1,22						
Increasing	C35/45	- Ψc	,,	1,32						
factors concrete	C40/50	_ 10	[-]	1,41						
	C45/55	-			1	,50				
	C50/60	-			1	,58				
Installation factor		γinst	[-]	1,0						
Concrete cone f	ailure and splitti	ing failu	ire; cond	rete pryout fa	ailure					
Effective embedr	nent depth	h _{ef}	[mm]	32	36	40	44			
		$k_{ucr,N}$			1	1,0	•			
Factor for uncrac	ked concrete	· ·ucr,iv								
		k _{cr,N}	[-]			7,7				
Factor for cracke	d concrete				7	7,7 5 h _{ef}				
Factor for cracke Characteristic ed	d concrete ge distance	k _{cr,N} c _{cr,N}	[mm]		7, 1,	,				
Factor for cracke Characteristic ed Characteristic sp Charakt. resistan	d concrete ge distance acing ce for splitting	k _{cr,N} c _{cr,N}	[mm]		7, 1,8 3	5 h _{ef}				
Factor for cracke Characteristic ed Characteristic spa Charact. resistan Charact. edge dis splitting	d concrete ge distance acing ce for splitting stance for	k _{cr,N} c _{cr,N}	[mm]		7 1,4 3 N 1,4	h _{ef} Rk,c h _{ef}				
Factor for cracke Characteristic ed Characteristic spa Characteristic spa Charakt. resistan Charact. edge dis splitting	d concrete ge distance acing ce for splitting stance for	$\begin{aligned} & k_{cr,N} \\ & c_{cr,N} \\ & s_{cr,N} \\ & N^0_{Rk,sp} \end{aligned}$	[mm]		7 1,4 3 N 1,4	h _{ef}				
Factor for uncrace Factor for cracke Characteristic ed Characteristic specific control Charakt. resistan Charact. edge dissplitting Charakt. spacing Factor for pryout	d concrete ge distance acing ce for splitting stance for for splitting failure	$\begin{aligned} & k_{cr,N} \\ & c_{cr,N} \\ & s_{cr,N} \\ & N^0_{Rk,sp} \\ & c_{cr,sp} \end{aligned}$	[mm]		7 1,4 3 N 1,4	h _{ef} Rk,c h _{ef}				
Factor for cracke Characteristic ed Characteristic spe Charakt. resistan Charact. edge dis splitting Charakt. spacing Factor for pryout	d concrete ge distance acing ce for splitting stance for for splitting	$\begin{aligned} & k_{cr,N} \\ & c_{cr,N} \\ & s_{cr,N} \\ & N^0_{Rk,sp} \\ & c_{cr,sp} \\ & s_{cr,sp} \end{aligned}$	[kN] [mm]		7 1,4 3 N 1,4	h _{ef} h _{ef} Rk,c h _{ef}				
Factor for cracke Characteristic ed Characteristic specific control Charakt. resistan Charact. edge dissiplitting Charakt. spacing Factor for pryout Installation factor Concrete edge f	d concrete ge distance acing ce for splitting stance for for splitting failure	$\begin{aligned} & k_{cr,N} \\ & c_{cr,N} \\ & s_{cr,N} \\ & N^0_{Rk,sp} \\ & c_{cr,sp} \\ & s_{cr,sp} \\ & k_8 \end{aligned}$	[kN] [mm]		7 1,4 3 N 1,4 3	5 h _{ef} h _{ef} Rk,c 5 h _{ef} h _{ef}				
Factor for cracke Characteristic ed Characteristic space Charakt. resistan Charact. edge dis splitting Charakt. spacing	d concrete ge distance acing ce for splitting stance for for splitting failure	$\begin{aligned} & k_{cr,N} \\ & c_{cr,N} \\ & s_{cr,N} \\ & N^0_{Rk,sp} \\ & c_{cr,sp} \\ & s_{cr,sp} \\ & k_8 \\ & \gamma_{inst} \\ & l_f \end{aligned}$	[kN] [mm]	40	7 1,4 3 N 1,4	5 h _{ef} h _{ef} Rk,c 5 h _{ef} h _{ef}	55			
Factor for cracke Characteristic ed Characteristic specific control Charakt. resistan Charact. edge dissiplitting Charakt. spacing Factor for pryout Installation factor Concrete edge f	d concrete ge distance acing ce for splitting stance for for splitting failure acidere	$\begin{aligned} & k_{cr,N} \\ & c_{cr,N} \\ & s_{cr,N} \\ & N^0_{Rk,sp} \\ & c_{cr,sp} \\ & s_{cr,sp} \\ & k_8 \\ & \gamma_{inst} \\ & l_f \end{aligned}$	[kN] [mm]	40	7 1,4 3 N 1,4 3	5 h _{ef} h _{ef} Rk,c 5 h _{ef} h _{ef} 2,0	55			
Factor for cracke Characteristic ed Characteristic space Charakt. resistan Charact. edge dis splitting Charakt. spacing Factor for pryout Installation factor Concrete edge f Effective length in	d concrete ge distance acing ce for splitting stance for for splitting failure acidere	$\begin{array}{c} k_{cr,N} \\ c_{cr,N} \\ s_{cr,N} \\ N^0_{Rk,sp} \\ c_{cr,sp} \\ s_{cr,sp} \\ k_8 \\ \hline \gamma_{inst} \\ \end{array}$	[kN] [mm]	40	7 1,4 3 N 1,4 3	5 h _{ef} h _{ef} Rk,c 5 h _{ef} h _{ef} h _{ef} 1,0	55			
Factor for cracke Characteristic ed Characteristic specific control co	d concrete ge distance acing ce for splitting stance for for splitting failure acilure a concrete of screw ess of shims	$\begin{aligned} & k_{cr,N} \\ & c_{cr,N} \\ & s_{cr,N} \\ & N^0_{Rk,sp} \\ & c_{cr,sp} \\ & s_{cr,sp} \\ & k_8 \\ & \gamma_{inst} \\ & l_f \end{aligned}$	[kN] [mm]	40	7 1,4 3 N 1,4 3	5 h _{ef} h _{ef} Rk,c 5 h _{ef} h _{ef} h _{ef} 1,0	55			

fischer concrete screw ULTRACUT FBS II	
Performances Characteristic values for static and quasi-static action with FBS II 6	Annex C 1

[mm] r load [kN] [-] [kN] [Nm]	3 13,1	65 5 19,0	29	55 55 95	34,9	1,4 31 1,5 1,0	75 76 ,9	42,7	65 46	14 85 103 ,5	61,7
r load [kN] [-] [kN] [-] [Nm]	3	19,0		55		1,4 31 1,5	76			103	
[kN] [-] [kN] [-] [Nm]	13,1	19,0	29	,4	34,9	31 1,5		42,7	46		61,7
[-] [kN] [-] [Nm]	13,1	19,0	29	,4	34,9	31 1,5		42,7	46		61,7
[kN] [-] [Nm]	,		29		34,9	31 1,5	,9	42,7	46	,5	61,7
[-] [Nm]	,		29		34,9	1,5	,9	42,7	46	,5	61,7
[Nm]	5	1		95							
[Nm]	5	1		95		1,0					
	5	1		95							
[kN]							165			269	
[kN]											
						_1)					
[kN]	6	12	9	12				- ¹⁾			
						1,12					
						1,22					
l ., i						1,32					
[-]						1,41					
						1,50					
						1,58					
[-]						1,0					
	oncre	te pry	out fa	ilure							
[mm]	40	52	43	51	68	47	60	81	50	67	93
[mm]						11,0					
[mm]						7,7					
[mm]						1,5 h _{ef}					
[mm]						3 h _{ef}					
[mm]						1,5 h _{ef}					
[mm]						$3\ h_{\text{ef}}$					
[-]	1,0	2,0	1,0				2	,0			
[-]						1,0					
			55		85	60		100	65		115
[mm]	8	3		10			12			14	
[[10					
[mm] [-]						10 2					
	[mm] [mm] [mm] [mm] [mm]	[-] ure; concre mm 40 mm mm mm mm mm -] 1,0 -]	[-] ure; concrete pry mm 40 52 mm mm mm mm mm mm -] 1,0 2,0 -]	[-] ure; concrete pryout fa mm 40 52 43 mm mm mm mm mm mm -] 1,0 2,0 1,0 -] mm 50 65 55	[-]	[-]	[-] 1,32 1,41 1,50 1,58 [-] 1,0 ure; concrete pryout failure [mm] 40 52 43 51 68 47 [mm] 11,0 [mm] 7,7 [mm] 7,7 [mm] 1,5 hef 1,5	[-]	[-]	[-]	[-]

		T			T _		
Nominal embedment depth	h _{nom}	[mm]	40	45	5	0	55
Steel failure for tension load ar		load					
Characteristic resistance	$N_{Rk,s,eq}$	⊢[kN]			21		
	$V_{Rk,s,eq}$			6,3	0.5		9,3
Without filling of the annular gap With filling of the annular gap ¹⁾	$\alpha_{\sf gap}$	- [-]			0,5		
	$\alpha_{\sf gap}$	1			1,0		
Pullout failure Characteristic resistance in				T	Т		
cracked concrete	$N_{Rk,p,eq}$	[kN]	2,5	3,5	4,	0	5,0
Concrete cone failure							
Effective embedment depth	h _{ef}	Т	32	36	4	0	44
Characteristic edge distance	C _{cr,N}	[mm]			,5 h _{ef}		
Characteristic spacing	S _{cr,N}	٦ ′			3 h _{ef}		
Installation factor	γinst	[-]			1,0		
Concrete pryout failure							
Factor for pryout failure	k ₈	[-]			2,0		
Concrete edge failure							
Effective length in concrete	I _f	[mains]	40	45	5	0	55
Nominal diameter of screw	d _{nom}	[mm]			6		
Table C3.2: Characteristic		for sei	smic perform	nance category	C1 with	r FBS I	I 8 – 14 ¹⁾
				FB:			
Size			8	10	12		14
Nominal embedment depth	h _{nom}	[mm]	65	85	100)	115
Steel failure for tension load ar	d shear	load					
Characteristic resistance	$N_{Rk,s,eq}$	[LAJ]	35	55	76		103
Characteristic resistance	$V_{Rk,s,eq}$	[kN]	11,4	22,3	26,	9	38,3
Nithout filling of the annular gap	~	[-]		0,	5		
Nith filling of the annular gap ¹⁾	$\alpha_{\sf gap}$	[]		1,	0		
Pullout failure							
Characteristic resistance in	$N_{Rk,p,eq}$	[kN]	12		_2)		· · · · · · · · · · · · · · · · · · ·
cracked concrete	-INN,P,Eq						
Concrete cone failure	<u></u>		50	20	0.1	ı	00
Effective embedment depth	h _{ef}	[mm]	52	68	81		93
Characteristic edge distance Characteristic spacing		[mm]		1,5			
nstallation factor	S _{cr,N}	[-]		3 l 1,			
Concrete pryout failure	γinst	[7]			<u> </u>		
actor for pryout failure	k ₈	[-]		2,	0		
Concrete edge failure	1/8	r J		۷,			
Effective length in concrete	I _f		65	85	100)	115
Nominal diameter of screw	d _{nom}	[mm]	8	10	12		14
				10	12		17
 Filling of the annular gap ac Pullout failure not decisive 	cording	annex E	3 5				
fischer concrete screw UL	ΓRACU	IT FBS	S II				
Performances Characteristic values for seismic	nerform	nance c	ategory C1			An	inex C 3

Table C4.1: Characteristic	values	101 50	asinic penonn	ance category	7 02				
Size		FBS II							
Size			8	10	12	14			
Nominal embedment depth	h_{nom}	[mm]	65	85	100	115			
Steel failure for tension load a	nd shear	load							
Characteristic registeres	$N_{Rk,s,eq}$	[LAI]	35,0	55	76,0	103			
Characteristic resistance	$V_{Rk,s,eq}$		13,3	20,4	29,9	35,2			
With filling of the annular gap ¹⁾	$\alpha_{\sf gap}$	[-]	1,0						
Pullout failure									
Characteristic resistance in cracked concrete	$N_{Rk,p,eq}$	[kN]	2,1	6,0	8,9	17,1			
Concrete cone failure									
Effective embedment depth	h _{ef}		52	68	81	93			
Characteristic edge distance	C _{cr,N}	[mm]	1,5 h _{ef}						
Characteristic spacing	S _{cr,N}		3 h _{ef}						
Installation factor	γinst	[-]	1,0						
Concrete pryout failure									
Factor for pryout failure	k ₈	[-]		2	,0				
Concrete edge failure									
Effective length in concrete	I _f	[mm]	65	85	100	115			
Nominal diameter of screw	d _{nom}	[mm]	8	10	12	14			

¹⁾ Filling of the annular gap according annex B 5. Application without filling of the annular gap not allowed.

fischer concrete screw ULTRACUT FBS II	
Performances Characteristic values for seismic performance category C2 with FBS II 8 - 14	Annex C 4

			to ine wi	th FBS II 6 ¹⁾						
	h_{nom}	[mm]	40	45	50	55				
shea	r load ($N_{Rk,s,fi} = V_{Rk,fi}$,s,fi)							
	R30		1,00							
	R60	[LAI]	0,60							
,s,fi	R90	[kN]	0,50							
	R120		0,40							
M ⁰ _{Rk,s,fi}	R30		0,80							
	R60	[Nima]	0,50							
	R90	livmi	0,40							
	R120		0,35							
	$C_{cr,fi}$	[mm]		2	n _{ef}					
n one	side, th	e minimi	ım edge dis	stance shall be ≥ 3	300 mm					
	S _{cr fi}	[mm]		2 0	cr fi					
		R60 R90 R120 c _{cr,fi} n one side, th	$ \frac{R60}{R90} $ R120 $ \frac{C_{cr,fi}}{n \text{ one side, the minimula}} $	Rk,s,fi R60 R90 R120 [Nm] c _{cr,fi} [mm] n one side, the minimum edge dis	$ \frac{R60}{R90} [Nm] \qquad \qquad 0,3 \\ \frac{R120}{R120} [Nm] \qquad \qquad 0,3 \\ \frac{C_{cr,fi}}{n one side, the minimum edge distance shall be \geq 3 $	Rk,s,fi R60 R90 R120 R120 R120 0,50 0,40 0,35				

1) TI	he embedment depth has to be increased for wet concrete by at least 30 mm compared to the given
valu	

fischer concrete screw ULTRACUT FBS II	
Performances Characteristic values for resistance to fire with FBS II 6	Annex C 5

Table C6.1: Cha	racterist	ic valu	ies for	resist	tance	e to f	ire w	ith F	BS	I 8 –	· 14 ¹)			
0:	FBS II														
Size	1	3		10			12			14	1				
Nominal embedment depth h _{nom} [mm]						65	55	65	85	60	75	100	65	85	115
Steel failure for tension load and shear load ($F_{Rk,s,fi} = N_{Rk,s,fi} = V_{Rk,s,fi}$)															
			R30		2,	33		3,45			4,62		6,46		
		_	R60	1	1,	82		2,73			3,66			5,1	1
	US, S	⊢ _{Rk,s,fi}	R90	1	1,	30		2,00			2,69			3,7	'5
			R120		1,	04		1,64		2,20			3,08		
			R30	[kN]	2,12			2,96							
Characteristic	SK,	_	R60		1,67			2,26	2,26						
h	US TX, S TX	⊢ _{Rk,s,fi}	R90		1,21			1,56		-					
	317		R120		0,	99		1,21							
		M ⁰ _{Rk,s,f}	R30		2,62			4,92		7,83				12,	 89
	. All		R60	<u>.</u>	2,05		3,89		6,20			10,19			
	head shapes		R90	[Nm]	n] 1,46		2,85		4,56			7,48			
snape		3	R120	1	1,17		2,34		3,73			6,14			
Pullout failure															
			R30												
Characteristic resists		NI	R60	[LAI]	1,5	3,0	2,3	3,0	5,0	2,9	4,2	6,6	3,2	4,9	8,1
Characteristic resista	nce	$N_{Rk,p,fi}$	R90	[kN]											
			R120		1,2	2,4	1,8	2,4	4,0	2,3	3,3	5,2	2,5	3,9	6,5
Edge distance															
R30 to R120	R30 to R120 c _{cr,fi} [mm] 2 h _{ef}														
In case of fire attack from more than one side, the minimum edge distance shall be ≥ 300 mm															
Spacing															
R30 to R120			$S_{cr,fi}$	[mm]						2 c	cr,fi				

¹⁾ The embedment depth has to be increased for wet concrete by at least 30 mm compared to the given value.

fischer concrete screw ULTRACUT FBS II	
Performances Characteristic values for resistance to fire with FBS II 8 - 14	Annex C 6

Table C7.1: Displacements due to tension loads (static)

Size		FBS II													
Size			6 ¹⁾		8		10			12			14		
Nominal embedment depth	h_{nom}	[mm]	40	55	50	65	55	65	85	60	75	100	65	85	115
Tension load in cracked concrete	N	[kN]	2,0	3,5	2,9	5,7	4,3	5,7	9,6	5,5	8,0	12,5	6,1	9,4	15,3
Dianlacement	δ_{N0}	[mm]	1,1	1,4	0,5	0,9	0,7	0,7	0,8	0,7	0,9	0,8	0,8	1,0	0,8
Displacement	$\delta_{N^{\infty}}$	[mm]	2,5	2,5	1,3	1,0	0,7	0,7	0,8	1,3	0,9	0,8	1,1	1,0	1,1
Tension load in uncracked concrete	N	[kN]	4,0	7,0	7,9	12,0	6,8	8,8	13,5	7,7	11,0	17,4	8,5	13,2	21,6
Displacement	δ_{N0}	[mm]	1,0	1,8	0,9	1,4	0,9	0,9	1,4	0,9	1,1	1,4	1,0	1,3	1,1
	$\delta_{N^{\infty}}$	[mm]	1,7	2,6	1,4	1,4	1,4	1,4	1,4	1,4	1,4	1,4	1,1	1,3	1,1

¹⁾ Intermediate values by linear interpolation

 Table C7.2: Displacements due to shear loads (static)

Size			FBS II												
Size				6 ¹⁾		8		10			12			14	
Nominal embedment depth	h_{nom}	[mm]	40	55	50	65	55	65	85	60	75	100	65	85	115
Shear load in cracked and uncracked concrete	V	[kN]	4,5	6,7	6,2	9,0	14,0	14,0	16,6	15,9	15,9	21,2	23,0	23,0	30,5
Displacement	δ_{V0} $\delta_{V\infty}$	[mm]	2,0 2,9	2,9 4,4	1,4 2,0	1,4 2,1	3,2 4,9	3,2 4,9	3,2 4,9	2,5 3,8	2,5 3,8	3,4 5,1	2,8 4,2	2,8 4,2	5,4 8,1

¹⁾ Intermediate values by linear interpolation

Table C7.3: Displacements due to tension loads (seismic performance category C2)

Size			FBS II							
Size			8	10	12	14				
Nominal embedment depth	h_{nom}		65	85	100	115				
Displacement DLS	$\delta_{N,eq(DLS)}$	[mm]	0,5	0,8	0,9	1,3				
Displacement ULS	$\delta_{N,eq\;(ULS)}$		1,7	2,8	2,7	5,0				

Table C7.4: Displacements due to shear loads (seismic performance category C2)

Size	FBS II							
Size			8	10	12	14		
Nominal embedment depth	h_{nom}		65	85	100	115		
Displacement DLS	$\delta_{V,eqDLS)}$	[mm]	1,6	2,7	3,1	4,1		
Displacement ULS	$\delta_{ m V,eq~(ULS)}$		3,9	7,1	5,3	8,7		

fischer concrete screw ULTRACUT FBS II	
Performances Displacements due to tension and shear loads	Annex C 7